
CSC D70:
Compiler Optimization

Pointer Analysis

Prof. Gennady Pekhimenko
University of Toronto

Winter 2019

The content of this lecture is adapted from the lectures of
Todd Mowry, Greg Steffan, and Phillip Gibbons

• Basics
• Design Options
• Pointer Analysis Algorithms
• Pointer Analysis Using BDDs
• Probabilistic Pointer Analysis

2

Outline

Pros and Cons of Pointers
• Many procedural languages have pointers

– e.g., C or C++: int *p = &x;
• Pointers are powerful and convenient

– can build arbitrary data structures
• Pointers can also hinder compiler optimization

– hard to know where pointers are pointing
– must be conservative in their presence

• Has inspired much research
– analyses to decide where pointers are pointing
– many options and trade-offs
– open problem: a scalable accurate analysis

3

Pointer Analysis Basics: Aliases

• Two variables are aliases if:
– they reference the same memory location

• More useful:
– prove variables reference different location

4

int x,y;

int *p = &x;

int *q = &y;

int *r = p;

int **s = &q;

Alias Sets ?
{x, *p, *r}
{y, *q, **s}
{q, *s}

p and q point to different locs

The Pointer Alias Analysis Problem
• Decide for every pair of pointers at every program point:

– do they point to the same memory location?
• A difficult problem

– shown to be undecidable by Landi, 1992
• Correctness:

– report all pairs of pointers which do/may alias
• Ambiguous:

– two pointers which may or may not alias
• Accuracy/Precision:

– how few pairs of pointers are reported while remaining correct
– i.e., reduce ambiguity to improve accuracy

5

Many Uses of Pointer Analysis
• Basic compiler optimizations
– register allocation, CSE, dead code elimination, live

variables, instruction scheduling, loop invariant code
motion, redundant load/store elimination

• Parallelization
– instruction-level parallelism
– thread-level parallelism

• Behavioral synthesis
– automatically converting C-code into gates

• Error detection and program understanding
– memory leaks, wild pointers, security holes

6

Challenges for Pointer Analysis
• Complexity: huge in space and time

– compare every pointer with every other pointer
– at every program point
– potentially considering all program paths to that point

• Scalability vs. accuracy trade-off
– different analyses motivated for different purposes
– many useful algorithms (adds to confusion)

• Coding corner cases
– pointer arithmetic (*p++), casting, function pointers, long-jumps

• Whole program?
– most algorithms require the entire program
– library code? optimizing at link-time only?

7

Pointer Analysis: Design Options

• Representation
• Heap modeling
• Aggregate modeling
• Flow sensitivity
• Context sensitivity

8

Alias Representation

9

• Track pointer aliases
– <*a, b>, <*a, e>, <b, e>

<**a, c>, <**a, d>, …
– More precise, less efficient

• Track points-to info
– <a, b>, <b, c>, <b, d>,

<e, c>, <e, d>
– Less precise, more efficient
– Why?

a = &b;
b = &c;
b = &d;
e = b;

a b c

de

a

b

*a

e dc

*b

**
a

*e

Heap Modeling Options
• Heap merged

– i.e. “no heap modeling”
• Allocation site (any call to malloc/calloc)

– Consider each to be a unique location
– Doesn’t differentiate between multiple objects allocated by

the same allocation site
• Shape analysis

– Recognize linked lists, trees, DAGs, etc.

10

Aggregate Modeling Options
Arrays

11

…
Elements are treated
as individual locations

or

Treat entire array
as a single location

or

Treat entire structure as a
single location

…

Elements are treated
as individual locations
(“field sensitive”)

Structures

or

Treat first element
separate from others

…

What are the tradeoffs?

Flow Sensitivity Options
• Flow insensitive

– The order of statements doesn’t matter
• Result of analysis is the same regardless of statement order

– Uses a single global state to store results as they are computed
– Not very accurate

• Flow sensitive
– The order of the statements matter
– Need a control flow graph
– Must store results for each program point
– Improves accuracy

• Path sensitive
– Each path in a control flow graph is considered

12

Flow Sensitivity Example
(assuming allocation-site heap modeling)

13

S1: a = malloc(…);
S2: b = malloc(…);
S3: a = b;
S4: a = malloc(…);
S5: if(c)
 a = b;
S6: if(!c)
 a = malloc(…);
S7: … = *a;

Flow Insensitive
aS7

Flow Sensitive
aS7

Path Sensitive
aS7

{heapS1, heapS2, heapS4, heapS6}

(order doesn’t matter, union of all possibilities)

{heapS2, heapS4, heapS6}

(in-order, doesn’t know s5 & s6 are exclusive)

{heapS2, heapS6}

(in-order, knows s5 & s6 are exclusive)

int a, b, *p;
int main()
{
S1: f();
S2: p = &a;
S3: g();
}

Context Sensitivity Options
• Context insensitive/sensitive

– whether to consider different calling contexts
– e.g., what are the possibilities for p at S6?

14

int f()
{
S4: p = &b;
S5: g();
}

int g()
{
S6: … = *p;
}

Context Insensitive:

Context Sensitive:

pS6 => {a,b}

Called from S5:pS6 => {b}
Called from S3:pS6 => {a}

Pointer Alias Analysis Algorithms
References:
• “Points-to analysis in almost linear time”, Steensgaard, POPL 1996
• “Program Analysis and Specialization for the C Programming Language”,

Andersen, Technical Report, 1994
• “Context-sensitive interprocedural points-to analysis in the presence of

function pointers”, Emami et al., PLDI 1994
• “Pointer analysis: haven't we solved this problem yet?”, Hind, PASTE 2001
• “Which pointer analysis should I use?”, Hind et al., ISSTA 2000
• …

• “Introspective analysis: context-sensitivity, across the board”,
Smaragdakiset al., PLDI 2014

• “Sparse flow-sensitive pointer analysis for multithreaded programs”, Sui et
al., CGO 2016

• “Symbolic range analysis of pointers”, Paisanteet al., CGO 2016

15

Address Taken

• Basic, fast, ultra-conservative algorithm
– flow-insensitive, context-insensitive
– often used in production compilers

• Algorithm:
– Generate the set of all variables whose addresses are

assigned to another variable.
– Assume that any pointer can potentially point to any

variable in that set.
• Complexity: O(n) - linear in size of program
• Accuracy: very imprecise

16

Address Taken Example

pS5 =

17

T *p, *q, *r;

int main() {
S1: p = alloc(T);
 f();
 g(&p);
S4: p = alloc(T);
S5: … = *p;
}

void f() {
S6: q = alloc(T);
 g(&q);
S8: r = alloc(T);
}

g(T **fp) {
 T local;
 if(…)
s9: p = &local;
}

{heap_S1, p, heap_S4, heap_S6, q, heap_S8, local}

Andersen’s Algorithm
• Flow-insensitive, context-insensitive, iterative
• Representation:

– one points-to graph for entire program
– each node represents exactly one location

• For each statement, build the points-to graph:

• Iterate until graph no longer changes
• Worst case complexity: O(n3), where n = program size

18

y = &x y points-to x

y = x if x points-to w
then y points-to w

*y = x if y points-to z and x points-to w
then z points-to w

y = *x if x points-to z and z points-to w
then y points-to w

Andersen Example

pS5 =

19

T *p, *q, *r;

int main() {
S1: p = alloc(T);
 f();
 g(&p);
S4: p = alloc(T);
S5: … = *p;
}

void f() {
S6: q = alloc(T);
 g(&q);
S8: r = alloc(T);
}

g(T **fp) {
 T local;
 if(…)
s9: p = &local;
}

{heap_S1,
 heap_S4,
 local}

Steensgaard’s Algorithm

• Flow-insensitive, context-insensitive
• Representation:
– a compact points-to graph for entire program

• each node can represent multiple locations
• but can only point to one other node

– i.e. every node has a fan-out of 1 or 0

• union-find data structure implements fan-out
– “unioning” while finding eliminates need to iterate

• Worst case complexity: O(n)
• Precision: less precise than Andersen’s

20

Steensgaard Example

pS5 =

21

T *p, *q, *r;

int main() {
S1: p = alloc(T);
 f();
 g(&p);
S4: p = alloc(T);
S5: … = *p;
}

void f() {
S6: q = alloc(T);
 g(&q);
S8: r = alloc(T);
}

g(T **fp) {
 T local;
 if(…)
s9: p = &local;
}

{heap_S1,
 heap_S4,
 heap_S6,
 local}

Example with Flow Sensitivity

pS5 =

22

T *p, *q, *r;

int main() {
S1: p = alloc(T);
 f();
 g(&p);
S4: p = alloc(T);
S5: … = *p;
}

void f() {
S6: q = alloc(T);
 g(&q);
S8: r = alloc(T);
}

g(T **fp) {
 T local;
 if(…)
s9: p = &local;
}

pS9 ={heap_S4} {local, heap_s1}

Pointer Analysis Using BDDs:
Binary Decision Diagrams
References:
• “Cloning-based context-sensitive pointer alias

analysis using binary decision diagrams”,
Whaley and Lam, PLDI 2004

• “Symbolic pointer analysis revisited”, Zhu and
Calman, PDLI 2004

• “Points-to analysis using BDDs”, Berndl et al,
PDLI 2003

23

Binary Decision Diagram (BDD)

24

Binary Decision Tree Truth Table BDD

BDD-Based Pointer Analysis

• Use a BDD to represent transfer functions
– encode procedure as a function of its calling context
– compact and efficient representation

• Perform context-sensitive, inter-procedural
analysis
– similar to dataflow analysis
– but across the procedure call graph

• Gives accurate results
– and scales up to large programs

25

Probabilistic Pointer Analysis
References:
• “A Probabilistic Pointer Analysis for Speculative

Optimizations”, DaSilva and Steffan, ASPLOS 2006
• “Compiler support for speculative multithreading

architecture with probabilistic points-to analysis”, Shen et
al., PPoPP 2003

• “Speculative Alias Analysis for Executable Code”, Fernandez
and Espasa, PACT 2002

• “A General Compiler Framework for Speculative
Optimizations Using Data Speculative Code Motion”, Dai et
al., CGO 2005

• “Speculative register promotion using Advanced Load
Address Table (ALAT)”, Lin et al., CGO 2003

26

Pointer Analysis: Yes, No, & Maybe

• Do pointers a and b point to the same location?
– Repeat for every pair of pointers at every program point

• How can we optimize the “maybe” cases?

27

*a = ~
 ~ = *b

Definitely Not

Definitely

Maybe

Pointer
Analysis

optimize

*a = ~ ~ = *b

Let’s Speculate
• Implement a potentially unsafe optimization

– Verify and Recover if necessary

28

int *a, x;
…
while(…)
{
 x = *a;
 …
} a is probably

loop invariant

int *a, x, tmp;
…
tmp = *a;
while(…)
{
 x = tmp;
 …
}
<verify, recover?>

Data Speculative Optimizations
• EPIC Instruction sets

– Support for speculative load/store instructions (e.g., Itanium)
• Speculative compiler optimizations

– Dead store elimination, redundancy elimination, copy
propagation, strength reduction, register promotion

• Thread-level speculation (TLS)
– Hardware and compiler support for speculative parallel threads

• Transactional programming
– Hardware and software support for speculative parallel

transactions

Heavy reliance on detailed profile feedback

29

Can We Quantify “Maybe”?
• Estimate the potential benefit for speculating:

Ideally “maybe” should be a probability.

30

Speculate?

Expected
speedup
(if successful)

Recovery
penalty

(if unsuccessful)

Overhead
for verify

Maybe

Probability
of success

Definitely Not

Definitely

Maybe

Conventional Pointer Analysis

• Do pointers a and b point to the same location?
– Repeat for every pair of pointers at every program

point

31

*a = ~
 ~ = *b

p = 0.0

p = 1.0

0.0 < p < 1.0

Pointer
Analysis

optimize

*a = ~ ~ = *b

Definitely Not

Definitely

Maybe

Probabilistic Pointer Analysis

• Potential advantage of Probabilistic Pointer
Analysis:
– it doesn’t need to be safe

32

*a = ~
 ~ = *b

p = 0.0

p = 1.0

0.0 < p < 1.0

Probabilistic
Pointer
Analysis

optimize

*a = ~ ~ = *b

PPA Research Objectives
• Accurate points-to probability information

– at every static pointer dereference
• Scalable analysis

– Goal: entire SPEC integer benchmark suite
• Understand scalability/accuracy tradeoff

– through flexible static memory model

Improve our understanding of programs

33

Algorithm Design Choices
Fixed:
• Bottom Up / Top Down Approach
• Linear transfer functions (for scalability)
• One-level context and flow sensitive

Flexible:
• Edge profiling (or static prediction)
• Safe (or unsafe)
• Field sensitive (or field insensitive)

34

35

Traditional Points-To Graph
int x, y, z, *b = &x;
void foo(int *a) {

 if(…)
 b = &y;

 if(…)
 a = &z;
 else(…)
 a = b;

 while(…) {
 x = *a;
 …
 }
}

y UN
D

a

z

b

x

= pointer

= pointed at

Definitely

Maybe

=

=

Results are inconclusive

36

Probabilistic Points-To Graph
int x, y, z, *b = &x;
void foo(int *a) {

 if(…)
 b = &y;

 if(…)
 a = &z;
 else
 a = b;

 while(…) {
 x = *a;
 …
 }
}

y UN
D

a

z

b

x

0.1 taken(edge profile)

0.2 taken(edge profile)

= pointer

= pointed at

p = 1.0

0.0<p< 1.0

=

=
p

0.10.9
0.72

0.08

0.2

Results provide more information

Probabilistic Pointer Analysis Results
Summary
• Matrix-based, transfer function approach
– SUIF/Matlab implementation

• Scales to the SPECint 95/2000 benchmarks
– One-level context and flow sensitive

• As accurate as the most precise algorithms
• Interesting result:
– ~90% of pointers tend to point to only one thing

37

Pointer Analysis Summary
• Pointers are hard to understand at compile time!

– accurate analyses are large and complex
• Many different options:

– Representation, heap modeling, aggregate modeling, flow
sensitivity, context sensitivity

• Many algorithms:
– Address-taken, Steensgarde, Andersen, Emami
– BDD-based, probabilistic

• Many trade-offs:
– space, time, accuracy, safety

• Choose the right type of analysis given how the
information will be used

38

CSC D70:
Compiler Optimization

Memory Optimizations (Intro)

Prof. Gennady Pekhimenko
University of Toronto

Winter 2019

The content of this lecture is adapted from the lectures of
Todd Mowry and Phillip Gibbons

Caches: A Quick Review
• How do they work?

• Why do we care about them?

• What are typical configurations today?

• What are some important cache parameters that
will affect performance?

Optimizing Cache Performance

• Things to enhance:
– temporal locality
– spatial locality

• Things to minimize:
– conflicts (i.e. bad replacement decisions)

What can the compiler do to help?

Two Things We Can Manipulate

• Time:
– When is an object accessed?

• Space:
– Where does an object exist in the address space?

How do we exploit these two levers?

Time: Reordering Computation

• What makes it difficult to know when an object is accessed?

• How can we predict a better time to access it?
– What information is needed?

• How do we know that this would be safe?

Space: Changing Data Layout

• What do we know about an object’s location?
– scalars, structures, pointer-based data structures, arrays,

code, etc.

• How can we tell what a better layout would be?
– how many can we create?

• To what extent can we safely alter the layout?

Types of Objects to Consider

• Scalars

• Structures & Pointers

• Arrays

Scalars

• Locals

• Globals

• Procedure arguments

• Is cache performance a concern here?
• If so, what can be done?

int x;
double y;
foo(int a){
 int i;
 …
 x = a*i;
 …
}

Structures and Pointers

• What can we do here?
– within a node
– across nodes

• What limits the compiler’s ability to optimize here?

struct {
int count;
double velocity;
double inertia;
struct node *neighbors[N];

} node;

Arrays

• usually accessed within loops nests
– makes it easy to understand “time”

• what we know about array element addresses:
– start of array?
– relative position within array

double A[N][N], B[N][N];
…
for i = 0 to N-1

for j = 0 to N-1
A[i][j] = B[j][i];

Handy Representation: “Iteration
Space”

• each position represents an iteration

for i = 0 to N-1
for j = 0 to N-1

A[i][j] =
B[j][i];

i

j

Visitation Order in Iteration Space

• Note: iteration space ≠ data space

for i = 0 to N-1
for j = 0 to N-1

A[i][j] =
B[j][i];

i

j

When Do Cache Misses Occur?
for i = 0 to N-1

for j = 0 to N-1
A[i][j] =

B[j][i];

i

j

i

j

A B

When Do Cache Misses Occur?

for i = 0 to N-1
for j = 0 to N-1

A[i+j][0] = i*j;

i

j

Optimizing the Cache Behavior of
Array Accesses
• We need to answer the following questions:

– when do cache misses occur?

• use “locality analysis”
– can we change the order of the iterations (or possibly data layout) to

produce better behavior?

• evaluate the cost of various alternatives
– does the new ordering/layout still produce correct results?

• use “dependence analysis”

Examples of Loop Transformations
• Loop Interchange
• Cache Blocking
• Skewing
• Loop Reversal
• …

(we will briefly discuss the first two next week)

CSC D70:
Compiler Optimization

Pointer Analysis &
Memory Optimizations (Intro)

Prof. Gennady Pekhimenko
University of Toronto

Winter 2019

The content of this lecture is adapted from the lectures of
Todd Mowry and Phillip Gibbons

