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Pros and Cons of Pointers
• Many procedural languages have pointers

– e.g., C or C++: int *p = &x;
• Pointers are powerful and convenient

– can build arbitrary data structures
• Pointers can also hinder compiler optimization

– hard to know where pointers are pointing
– must be conservative in their presence

• Has inspired much research
– analyses to decide where pointers are pointing
– many options and trade-offs
– open problem: a scalable accurate analysis
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Pointer Analysis Basics: Aliases

• Two variables are aliases if:
– they reference the same memory location

• More useful:
– prove variables reference different location
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int x,y;

int *p = &x;

int *q = &y;

int *r = p;

int **s = &q;

Alias Sets ?
{x, *p, *r}
{y, *q, **s}
{q, *s}

p and q point to different locs



The Pointer Alias Analysis Problem
• Decide for every pair of pointers at every program point:

– do they point to the same memory location?
• A difficult problem

– shown to be undecidable by Landi, 1992
• Correctness:

– report all pairs of pointers which do/may alias
• Ambiguous:

– two pointers which may or may not alias
• Accuracy/Precision:

– how few pairs of pointers are reported while remaining correct
– i.e., reduce ambiguity to improve accuracy
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Many Uses of Pointer Analysis
• Basic compiler optimizations
– register allocation, CSE, dead code elimination, live 

variables, instruction scheduling, loop invariant code 
motion, redundant load/store elimination

• Parallelization
– instruction-level parallelism
– thread-level parallelism

• Behavioral synthesis
– automatically converting C-code into gates

• Error detection and program understanding
– memory leaks, wild pointers, security holes
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Challenges for Pointer Analysis
• Complexity: huge in space and time

– compare every pointer with every other pointer
– at every program point
– potentially considering all program paths to that point

• Scalability vs. accuracy trade-off
– different analyses motivated for different purposes
– many useful algorithms (adds to confusion)

• Coding corner cases
– pointer arithmetic (*p++), casting, function pointers, long-jumps

• Whole program?
– most algorithms require the entire program
– library code?  optimizing at link-time only?
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Pointer Analysis: Design Options

• Representation
• Heap modeling
• Aggregate modeling 
• Flow sensitivity
• Context sensitivity
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Alias Representation
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• Track pointer aliases
– <*a, b>, <*a, e>, <b, e> 

<**a, c>, <**a, d>, …
– More precise, less efficient

• Track points-to info
– <a, b>, <b, c>, <b, d>,

<e, c>, <e, d>
– Less precise, more efficient
– Why?

a = &b;
b = &c;
b  = &d;
e = b;

a b c

de

a

b

*a

e dc

*b

**
a

*e



Heap Modeling Options
• Heap merged

– i.e. “no heap modeling”
• Allocation site (any call to malloc/calloc)

– Consider each to be a unique location
– Doesn’t differentiate between multiple objects allocated by 

the same allocation site
• Shape analysis

– Recognize linked lists, trees, DAGs, etc.
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Aggregate Modeling Options
Arrays
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…
Elements are treated
as individual locations

or

Treat entire array
as a single location

or

Treat entire structure as a 
single location

…

Elements are treated
as individual locations
(“field sensitive”)

Structures

or

Treat first element
separate from others

…

What are the tradeoffs?



Flow Sensitivity Options
• Flow insensitive

– The order of statements doesn’t matter
• Result of analysis is the same regardless of statement order

– Uses a single global state to store results as they are computed
– Not very accurate

• Flow sensitive
– The order of the statements matter
– Need a control flow graph
– Must store results for each program point
– Improves accuracy

• Path sensitive
– Each path in a control flow graph is considered
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Flow Sensitivity Example
(assuming allocation-site heap modeling)
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S1: a = malloc(…);
S2: b = malloc(…);
S3: a = b;
S4: a = malloc(…); 
S5: if(c)
      a = b;
S6: if(!c)
      a = malloc(…);
S7: … = *a;

Flow Insensitive
aS7  

Flow Sensitive
aS7 

Path Sensitive
aS7 

{heapS1, heapS2, heapS4, heapS6} 

(order doesn’t matter, union of all possibilities)

{heapS2, heapS4, heapS6} 

(in-order, doesn’t know s5 & s6 are exclusive)

{heapS2, heapS6} 

(in-order, knows s5 & s6 are exclusive)



int a, b, *p;
int main() 
{
S1: f();
S2: p = &a;
S3: g();
}

Context Sensitivity Options
• Context insensitive/sensitive

– whether to consider different calling contexts
– e.g., what are the possibilities for p at S6?
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int f() 
{
S4: p = &b;
S5: g();
}

int g() 
{
S6: … = *p;
}

Context Insensitive:

Context Sensitive:

pS6 =>  {a,b}

Called from S5:pS6 =>  {b}
Called from S3:pS6 =>  {a}



Pointer Alias Analysis Algorithms
References:
• “Points-to analysis in almost linear time”, Steensgaard, POPL 1996
• “Program Analysis and Specialization for the C Programming Language”,  

Andersen, Technical Report, 1994
• “Context-sensitive interprocedural points-to analysis in the presence of 

function pointers”, Emami et al., PLDI 1994
• “Pointer analysis: haven't we solved this problem yet?”, Hind, PASTE 2001
• “Which pointer analysis should I use?”, Hind et al., ISSTA 2000
• …

• “Introspective analysis: context-sensitivity, across the board”, 
Smaragdakiset al., PLDI 2014

• “Sparse flow-sensitive pointer analysis for multithreaded programs”, Sui et 
al., CGO 2016

• “Symbolic range analysis of pointers”, Paisanteet al., CGO 2016
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Address Taken

• Basic, fast, ultra-conservative algorithm
– flow-insensitive, context-insensitive
– often used in production compilers

• Algorithm:
– Generate the set of all variables whose addresses are 

assigned to another variable.
– Assume that any pointer can potentially point to any 

variable in that set.
• Complexity: O(n) - linear in size of program
• Accuracy: very imprecise
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Address Taken Example

pS5 =
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T *p, *q, *r;

int main() {
S1: p = alloc(T);
    f();
    g(&p);  
S4: p = alloc(T);
S5: … = *p;
}

void f() {
S6: q = alloc(T);
    g(&q);  
S8: r = alloc(T);
}

g(T **fp) {
    T local;
    if(…)  
s9:    p = &local;
}

{heap_S1, p, heap_S4, heap_S6, q, heap_S8, local}



Andersen’s Algorithm
• Flow-insensitive, context-insensitive, iterative 
• Representation:

– one points-to graph for entire program
– each node represents exactly one location

• For each statement, build the points-to graph:

• Iterate until graph no longer changes
• Worst case complexity: O(n3), where n = program size
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y = &x y points-to x

y = x if x points-to w
then y points-to w

*y = x if y points-to z and x points-to w
then z points-to w

y = *x if x points-to z and z points-to w
then y points-to w



Andersen Example

pS5 =
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T *p, *q, *r;

int main() {
S1: p = alloc(T);
    f();
    g(&p);  
S4: p = alloc(T);
S5: … = *p;
}

void f() {
S6: q = alloc(T);
    g(&q);  
S8: r = alloc(T);
}

g(T **fp) {
    T local;
    if(…)  
s9:    p = &local;
}

{heap_S1,
 heap_S4,
 local}



Steensgaard’s Algorithm

• Flow-insensitive, context-insensitive
• Representation: 
– a compact points-to graph for entire program

• each node can represent multiple locations
• but can only point to one other node 

– i.e. every node has a fan-out of 1 or 0

• union-find data structure implements fan-out
– “unioning” while finding eliminates need to iterate

• Worst case complexity: O(n)
• Precision: less precise than Andersen’s
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Steensgaard Example

pS5 =
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T *p, *q, *r;

int main() {
S1: p = alloc(T);
    f();
    g(&p);  
S4: p = alloc(T);
S5: … = *p;
}

void f() {
S6: q = alloc(T);
    g(&q);  
S8: r = alloc(T);
}

g(T **fp) {
    T local;
    if(…)  
s9:    p = &local;
}

{heap_S1,
 heap_S4,
 heap_S6,
 local}



Example with Flow Sensitivity

pS5 =
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T *p, *q, *r;

int main() {
S1: p = alloc(T);
    f();
    g(&p);  
S4: p = alloc(T);
S5: … = *p;
}

void f() {
S6: q = alloc(T);
    g(&q);  
S8: r = alloc(T);
}

g(T **fp) {
    T local;
    if(…)  
s9:    p = &local;
}

pS9 ={heap_S4} {local, heap_s1}



Pointer Analysis Using BDDs: 
Binary Decision Diagrams
References:
• “Cloning-based context-sensitive pointer alias 

analysis using binary decision diagrams”, 
Whaley and Lam, PLDI 2004

• “Symbolic pointer analysis revisited”, Zhu and 
Calman, PDLI 2004

• “Points-to analysis using BDDs”, Berndl et al, 
PDLI 2003
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Binary Decision Diagram (BDD)
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Binary Decision Tree Truth Table BDD



BDD-Based Pointer Analysis

• Use a BDD to represent transfer functions 
– encode procedure as a function of its calling context
– compact and efficient representation

• Perform context-sensitive, inter-procedural 
analysis
– similar to dataflow analysis
– but across the procedure call graph

• Gives accurate results
– and scales up to large programs
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Probabilistic Pointer Analysis
References:
• “A Probabilistic Pointer Analysis for Speculative 

Optimizations”, DaSilva and Steffan, ASPLOS 2006
• “Compiler support for speculative multithreading 

architecture with probabilistic points-to analysis”, Shen et 
al., PPoPP 2003

• “Speculative Alias Analysis for Executable Code”, Fernandez 
and Espasa, PACT 2002

• “A General Compiler Framework for Speculative 
Optimizations Using Data Speculative Code Motion”, Dai et 
al., CGO 2005

• “Speculative register promotion using Advanced Load 
Address Table (ALAT)”, Lin et al., CGO 2003
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Pointer Analysis: Yes, No, & Maybe

• Do pointers a and b point to the same location?
– Repeat for every pair of pointers at every program point

• How can we optimize the “maybe” cases? 
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*a = ~
   ~ = *b

Definitely Not

Definitely

Maybe

Pointer
Analysis

optimize

*a = ~ ~ = *b



Let’s Speculate
• Implement a potentially unsafe optimization

– Verify and Recover if necessary
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int *a, x;
…
while(…)
{
   x = *a; 
   …
} a is probably 

loop invariant 

int *a, x, tmp;
…
tmp = *a;
while(…)
{
   x = tmp; 
   …
} 
<verify, recover?>



Data Speculative Optimizations
• EPIC Instruction sets

– Support for speculative load/store instructions (e.g., Itanium)
• Speculative compiler optimizations

– Dead store elimination, redundancy elimination, copy 
propagation, strength reduction, register promotion

• Thread-level speculation (TLS) 
– Hardware and compiler support for speculative parallel threads

• Transactional programming
– Hardware and software support for speculative parallel 

transactions

Heavy reliance on detailed profile feedback
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Can We Quantify “Maybe”?
• Estimate the potential benefit for speculating:

Ideally “maybe” should be a probability.
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Speculate?

Expected
speedup
(if successful)

Recovery
penalty

(if unsuccessful)

Overhead
for verify

Maybe

Probability
of success



Definitely Not

Definitely

Maybe

Conventional Pointer Analysis

• Do pointers a and b point to the same location?
– Repeat for every pair of pointers at every program 

point
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*a = ~
   ~ = *b

p = 0.0

p = 1.0

0.0 < p < 1.0

Pointer
Analysis

optimize

*a = ~ ~ = *b



Definitely Not

Definitely

Maybe

Probabilistic Pointer Analysis

• Potential advantage of Probabilistic Pointer 
Analysis:
– it doesn’t need to be safe

32

*a = ~
   ~ = *b

p = 0.0

p = 1.0

0.0 < p < 1.0

Probabilistic
Pointer
Analysis

optimize

*a = ~ ~ = *b



PPA Research Objectives
• Accurate points-to probability information

– at every static pointer dereference
• Scalable analysis 

– Goal: entire SPEC integer benchmark suite
• Understand scalability/accuracy tradeoff

– through flexible static memory model

Improve our understanding of programs
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Algorithm Design Choices
Fixed:
•  Bottom Up / Top Down Approach
•  Linear transfer functions (for scalability)
•  One-level context and flow sensitive

Flexible:
• Edge profiling (or static prediction)
• Safe (or unsafe)
• Field sensitive (or field insensitive)
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Traditional Points-To Graph
int x, y, z, *b = &x;
void foo(int *a) {

   if(…) 
      b = &y;

   if(…)
      a = &z;
   else(…)  
      a = b; 
 
   while(…) {
      x = *a; 
      …
     }
} 

y UN
D

a

z

b

x

= pointer

= pointed at

Definitely

Maybe

=

=

Results are inconclusive 
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Probabilistic Points-To Graph
int x, y, z, *b = &x;
void foo(int *a) {

   if(…) 
      b = &y;

   if(…)
      a = &z;
   else  
      a = b; 
 
   while(…) {
      x = *a; 
      …
     }
} 

y UN
D

a

z

b

x

0.1 taken(edge profile)

0.2 taken(edge profile)

= pointer

= pointed at

p = 1.0

0.0<p< 1.0

=

=
p

0.10.9
0.72

0.08

0.2

Results provide more information



Probabilistic Pointer Analysis Results 
Summary
• Matrix-based, transfer function approach
– SUIF/Matlab implementation

• Scales to the SPECint 95/2000 benchmarks
– One-level context and flow sensitive

• As accurate as the most precise algorithms
• Interesting result:
– ~90% of pointers tend to point to only one thing
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Pointer Analysis Summary
• Pointers are hard to understand at compile time!

– accurate analyses are large and complex
• Many different options:

– Representation, heap modeling, aggregate modeling, flow 
sensitivity, context sensitivity

• Many algorithms:
– Address-taken, Steensgarde, Andersen, Emami
– BDD-based, probabilistic

• Many trade-offs:
– space, time, accuracy, safety

• Choose the right type of analysis given how the 
information will be used
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Caches: A Quick Review
• How do they work?

• Why do we care about them?

• What are typical configurations today?

• What are some important cache parameters that 
will affect performance?



Optimizing Cache Performance

• Things to enhance:
– temporal locality
– spatial locality

• Things to minimize:
– conflicts (i.e. bad replacement decisions)

What can the compiler do to help?



Two Things We Can Manipulate

• Time:
– When is an object accessed?

• Space:
– Where does an object exist in the address space?

How do we exploit these two levers?



Time: Reordering Computation

• What makes it difficult to know when an object is accessed?

• How can we predict a better time to access it?
– What information is needed?

• How do we know that this would be safe?



Space: Changing Data Layout

• What do we know about an object’s location?
– scalars, structures, pointer-based data structures, arrays, 

code, etc.

• How can we tell what a better layout would be?
– how many can we create?

• To what extent can we safely alter the layout?



Types of Objects to Consider

• Scalars

• Structures & Pointers

• Arrays



Scalars

• Locals

• Globals

• Procedure arguments

• Is cache performance a concern here?
• If so, what can be done?

int x;
double y;
foo(int a){
  int i;
  …
  x = a*i;
  …
}



Structures and Pointers

• What can we do here?
– within a node
– across nodes

• What limits the compiler’s ability to optimize here? 

struct {
int count;
double velocity;
double inertia;
struct node *neighbors[N];

} node;



Arrays

• usually accessed within loops nests
– makes it easy to understand “time”

• what we know about array element addresses:
– start of array?
– relative position within array

double A[N][N], B[N][N];
…
for i = 0 to N-1

for j = 0 to N-1
A[i][j] = B[j][i];



Handy Representation: “Iteration 
Space”

• each position represents an iteration

for i = 0 to N-1
for j = 0 to N-1

A[i][j] = 
B[j][i];

i

j



Visitation Order in Iteration Space

• Note: iteration space ≠ data space

for i = 0 to N-1
for j = 0 to N-1

A[i][j] = 
B[j][i];

i

j



When Do Cache Misses Occur?
for i = 0 to N-1

for j = 0 to N-1
A[i][j] = 

B[j][i];

i

j

i

j

A B



When Do Cache Misses Occur?

for i = 0 to N-1
for j = 0 to N-1

A[i+j][0] = i*j;

i

j



Optimizing the Cache Behavior of 
Array Accesses
• We need to answer the following questions:

– when do cache misses occur?

• use “locality analysis”
– can we change the order of the iterations (or possibly data layout) to 

produce better behavior?

• evaluate the cost of various alternatives
– does the new ordering/layout still produce correct results?

• use “dependence analysis”



Examples of Loop Transformations
• Loop Interchange
• Cache Blocking
• Skewing
• Loop Reversal
• …

(we will briefly discuss the first two next week)
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